Dominant yeast and mammalian RAS mutants that interfere with the CDC25-dependent activation of wild-type RAS in Saccharomyces cerevisiae.

نویسندگان

  • S Powers
  • K O'Neill
  • M Wigler
چکیده

Two mutant alleles of RAS2 were discovered that dominantly interfere with wild-type RAS function in the yeast Saccharomyces cerevisiae. An amino acid substitution which caused the dominant interference was an alanine for glycine at position 22 or a proline for alanine at position 25. Analogous mutations in human H-ras also dominantly inhibited RAS function when expressed in yeast cells. The inhibitory effects of the mutant RAS2 or H-ras genes could be overcome by overexpression of CDC25, but only in the presence of wild-type RAS. These results suggest that these mutant RAS genes interfere with the normal interaction of RAS and CDC25 proteins and suggest that this interaction is direct and has evolutionarily conserved features.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Residues crucial for Ras interaction with GDP-GTP exchangers.

Cdc25 is essential for Ras-mediated activation of adenylyl cyclase in the yeast Saccharomyces cerevisiae. This protein acts by catalyzing GDP-GTP exchange on yeast Ras. Harvey (Ha) ras expressed in S. cerevisiae is also recognized by both Cdc25 and Sdc25, a yeast homolog of Cdc25. Thus it is feasible to examine molecular aspects of mammalian Ras modulation by Cdc25 using the RAS/cAMP pathway in...

متن کامل

The N-terminal region of the Saccharomyces cerevisiae RasGEF Cdc25 is required for nutrient-dependent cell-size regulation.

In the yeast Saccharomyces cerevisiae, the Cdc25/Ras/cAMP/protein kinase A (PKA) pathway plays a major role in the control of metabolism, stress resistance and proliferation, in relation to the available nutrients and conditions. The budding yeast RasGEF Cdc25 was the first RasGEF to be identified in any organism, but very little is known about its activity regulation. Recently, it was suggeste...

متن کامل

Identification of a mammalian gene structurally and functionally related to the CDC25 gene of Saccharomyces cerevisiae.

The yeast Saccharomyces cerevisiae CDC25 gene encodes a nucleotide-exchange-factor (NEF) that can convert the inactive GDP-bound state of RAS proteins to an active RAS-GTP complex. CDC25 can activate the yeast RAS proteins as well as the human H-ras protein. CDC25 is a member of a family of yeast genes that likely encode NEFs capable of regulating the RAS-related proteins found in yeast. By ali...

متن کامل

A role for the noncatalytic N terminus in the function of Cdc25, a Saccharomyces cerevisiae Ras-guanine nucleotide exchange factor.

The Saccharomyces cerevisiae CDC25 gene encodes a guanine nucleotide exchange factor (GEF) for Ras proteins. Its catalytic domain is highly homologous to Ras-GEFs from all eukaryotes. Even though Cdc25 is the first Ras-GEF identified in any organism, we still know very little about how its function is regulated in yeast. In this work we provide evidence for the involvement of the N terminus of ...

متن کامل

Cisplatin cytotoxicity is dependent on mitochondrial respiration in Saccharomyces cerevisiae

Objective(s): To understand the role of mitochondrial respiration in cisplatin sensitivity, we have employed wild-type and mitochondrial DNA depleted Rho0 yeast cells. Materials and Methods: Wild type and Rho0 yeast cultured in fermentable and non-fermentable sugar containing media, were studied for their sensitivity against cisplatin by monitoring growth curves, oxygen consumption, pH changes ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Molecular and cellular biology

دوره 9 2  شماره 

صفحات  -

تاریخ انتشار 1989